Scatter-search with support vector machine for prediction of relative solvent accessibility
نویسندگان
چکیده
Proteins have vital roles in the living cells. The protein function is almost completely dependent on protein structure. The prediction of relative solvent accessibility gives helpful information for the prediction of tertiary structure of a protein. In recent years several relative solvent accessibility (RSA) prediction methods including those that generate real values and those that predict discrete states have been developed. The proposed method consists of two main steps: the first one, provided subset selection of quantitative features based on selected qualitative features and the second, dedicated to train a model with selected quantitative features for RSA prediction. The results show that the proposed method has an improvement in average prediction accuracy and training time. The proposed method can dig out all the valuable knowledge about which physicochemical features of amino acids are deemed more important in prediction of RSA without human supervision, which is of great importance for biologists and their future researches.
منابع مشابه
Prediction of Protein Relative Solvent Accessibility with Support Vector Machines and Long-range Interaction
The prediction of protein relative solvent accessibility gives us helpful information for the prediction of tertiary structure of a protein. The SVMpsi method which uses support vector machines (SVMs) and the position specific scoring matrix (PSSM) generated from PSI-BLAST has been applied to achieve better prediction accuracy of the relative solvent accessibility. We have introduced a three di...
متن کاملPREDICTION OF SLOPE STABILITY STATE FOR CIRCULAR FAILURE: A HYBRID SUPPORT VECTOR MACHINE WITH HARMONY SEARCH ALGORITHM
The slope stability analysis is routinely performed by engineers to estimate the stability of river training works, road embankments, embankment dams, excavations and retaining walls. This paper presents a new approach to build a model for the prediction of slope stability state. The support vector machine (SVM) is a new machine learning method based on statistical learning theory, which can so...
متن کاملPrediction of protein relative solvent accessibility with support vector machines and long-range interaction 3D local descriptor.
The prediction of protein relative solvent accessibility gives us helpful information for the prediction of tertiary structure of a protein. The SVMpsi method, which uses support vector machines (SVMs), and the position-specific scoring matrix (PSSM) generated from PSI-BLAST have been applied to achieve better prediction accuracy of the relative solvent accessibility. We have introduced a three...
متن کاملApplication of Genetic Algorithm Based Support Vector Machine Model in Second Virial Coefficient Prediction of Pure Compounds
In this work, a Genetic Algorithm boosted Least Square Support Vector Machine model by a set of linear equations instead of a quadratic program, which is improved version of Support Vector Machine model, was used for estimation of 98 pure compounds second virial coefficient. Compounds were classified to the different groups. Finest parameters were obtained by Genetic Algorithm method ...
متن کاملPrediction of Protein Relative Solvent Accessibility with Two-Stage SVM approach
Information on Relative Solvent Accessibility (RSA) of amino acid residues in proteins provides valuable clues to the prediction of protein structure and function. A two-stage approach with Support Vector Machines (SVMs) is proposed, where an SVM predictor is introduced to the output of the single-stage SVM approach to take into account the contextual relationships among solvent accessibilities...
متن کامل